Figure 3. Schematic of the low frequency measurement assembly. For seismic frequencies, strains are measured on both the sample and aluminum standard. Ultrasonic transducers permit wave propagation measurement near 1 MHz. Fluid lines permit control and exchange of pore fluids independent of confining pressure.
1. Ends flat and parallel (length should = 2.5 to 3 times diameter)

2. Coat sides with stiff, waterproof epoxy let set, then smooth off rough points

3. CT scan

4. Protect ends with tape (---)

5. Cut strip of Kapton (polyamide) film (---), protect outside surface With removable tape (---)

6. Epoxy on center strip of Kapton (polyamide) film

7. Set in place and apply slight pressure with thin teflon thread tape (---)

8. Attach aluminum end pieces (remember to align P- and S- transducers)
 - Allow bond to cure
 - Test transducer signals
 - Clean out pore fluid holes

9. Protect about 2.5 cm of center kapton surface with removable tape. Protect ends of aluminum with tape

10. Add end sheets of kapton, overlap center kapton and aluminum.

11. Remove protective tape

12. Bond semiconductor gages to aluminum

13. Bond foil gages to central kapton strip

14. Strip about 2mm of protective enamel off ends of coated magnet wire. Attach wire to gages. Bring wires out to top, sick in place with 5 minute epoxy

15. Cast on outer Jacket of flexible epoxy